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Introduction

Group actions:

A group homomorphism of a given group into the group of

transformations of the space.

Definition (Left action)

A group G is said to act on a set X when there is a map

ζ : G×X → X such that the following conditions hold for all

elements x ∈ X :

1. ζ(id, x) = x where id is the identity element of G.

2. ζ(g, ζ(h, x)) = ζ(gh, x) for all g, h ∈ G.

Here, G is called a transformation group, ζ is called the group

action.
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Introduction

Type of group actions:

In topological space X, there are four actions of G:

1. Wandering

If any x ∈ X has a neighbourhood U such that

{ g ∈ G | g ∩ U 6= ∅} is finite.

2. Properly discontinuously

3. Proper

If G is a topological group and the map from

G×X → X ×X : (g, x) 7→ (g · x, x) is proper.

4. Covering space action

If any x ∈ X has a neighbourhood U such that

{ g ∈ G | g · U ∩ U 6= ∅ } = {id}
4



Introduction

Preliminaries on group actions:

1. Discreteness

2. Orbits

3. Stabilizer
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Introduction

Recall:

Möb(H) and Möb(D) are groups (which are under composition).

The collection of those Möbius transformations form a group.

General linear group: GL(2, R)

Special linear group: SL(2, R)

Projective special linear group: PSL(2, R)

{a, b, c, d ∈ R }
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Introduction

Recall:

Möb(H):= {γ : z 7→ az+b
cz+d | ad− bc = 1, a, b, c, d ∈ R} satisfies:

(a) Each γ ∈ Möb(H) is an isometry.

(dH(γ(z1), γ(z2)) = dH(z1, z2))

(b) Möb(H) is a group, i.e.:

(i) Exists an identity element id. (id(z) = z,∀z ∈ H)

(ii) γ1, γ2 ∈ Möb(H)⇒ γ1 ◦ γ2 ∈ Möb(H) (Not abelian)

(iii) ∀γ ∈ Möb(H)⇒ ∃γ−1 ∈ Möb(H) (γ ◦ γ−1 = γ−1 ◦ γ = id)

(iv) γ1, γ2, γ3 ∈ Möb(H)⇒ (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3)
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Discreteness

Discreteness is important in geometry, topology and metric

spaces.

Metric space

A mathematical space on which it is possible to define the

distance between two points in the space.

Let d(x, y) be the distance between from x to y.

1: d(x, y) > 0 if x 6= y; d(x, x) = 0

2: d(x, y) = d(y, x)

3: d(x, y) ≤ d(x, z) + d(z, y)

8



Discreteness
Examples of metric spaces:

i. Rn with the Euclidean metric

d((x1, ..., xn), (y1, ..., yn))

= ||(x1, ..., xn)− (y1, ..., yn)||

=
√
|x1 − y1|2 + ...+ |xn − yn|2

ii. the upper half-plane H with the metric dH that we defined

in our last presentation, i.e.

dH(z, z′) = inf{ lengthH(σ) | σ is a piecewise

continuously differentiable path

with end-points z and z’}
9



Discreteness

Metric space

Let (X, d) be a metric space. A subset Y ⊂ X is discrete if

every point y ∈ Y is isolated.

Definition
A point y ∈ Y is isolated if there exist δ > 0 such that if y′ ∈ Y
and y′ 6= y, then d(y, y′) > δ.

10



Discreteness

Examples:

1. In any metric space, a single point {x} is discrete.

2. The set of rationals Q is not a discrete subgroup of R since

there are infinitely many distinct rationals arbitrarily close

to any given rational.
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Discreteness

Two Möbius transformations of H are close if the coefficients

(a, b, c, d) defining them are close.

But different coefficients (a, b, c, d) can give the same Möbius

transformations.

Recall:

Möbius transformation γ(z) = az+b
cz+d is normalised if ad− bc = 1.

But,

if γ(z) = az+b
cz+d is normalised, then γ(z) = −az−b

−cz−d is also

normalised.
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Discreteness

The normalised Möbius transformations of H given by

γ1(z) =
a1z + b1
c1z + d1

and

γ2(z) =
a2z + b2
c2z + d2

If either (a1, b1, c1, d1) and (a2, b2, c2, d2) are close or

(a1, b1, c1, d1) and (−a2, −b2, −c2, −d2) are close, then γ1(z)

and γ2(z) are close.
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Discreteness

Formula:

dMöb(γ1, γ2) = min{||(a1, b1, c1, d1)− (a2, b2, c2, d2)||,
||(a1, b1, c1, d1)− (−a2,−b2,−c2,−d2)||}

Think of Möbius transformations of H being close if they ’look

close’.

Same as Möbius transformations of D.
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Discreteness

Definition
Let X be a subset of Möb(H).

Then γ ∈ X is isolated if there exist δ > 0 such that

∀γ′ ∈ X − {γ}, we have dMöb(y, y′) > δ.

We say that a subset X ⊂ Möb(H) is discrete if every γ ∈ X is

isolated.

Remark:

We could equally well work with isometries of (D, dD) or any

other model of hyperbolic space.
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Discreteness

Definition
A subgroup G ⊂ SL(2,R) is a discrete group if G has no

accumulation points in SL(2,R).

Accumulation points

x is said to be an accumulation point in A if every open set

containing x contains at least one other point from A.
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Discreteness

Definition
A subset Z of H is discrete if for each z ∈ Z, there exists some

ε > 0 so that B(z, ε)
⋂
Z = {z}, where

B(z, ε) = {w ∈ H | dH(z, w) < ε}

is the open hyperbolic disc with hyperbolic centre z and

hyperbolic radius ε.

That is same as each point of Z can be isolated from all the

other points of Z.
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Discreteness

Let Γ be a subgroup of Möb(H), and suppose Γ is not discrete.

That is, there is some z ∈ H so that the set Γ(z) is not a

discrete subset of H.

By the definition of discreteness, there exists an element γ(z) of

Γ(z) so that for each ε > 0, the set Γ
⋂
B(γ(z), ε) contains a

point other than γ(z).

For each n ∈ N, choose an element γn of Γ so that γn(z) 6= γ(z)

and so that

γn(z) ∈ Γ(z)
⋂
B(γ(z),

1

n
).

As n→∞, we have that dH(γ(z), γn(z))→ 0. Pass to a

subsequence of {γn}, called {γn} to avoid the proliferation of

subscripts, so that the γn(z) are distinct. We now have a

sequence {γn} of distinct elements of Γ so that {γn} converges

to γ(z).
18



Discreteness

Lemma 1
Let Γ be a subgroup of Möb(H). Γ contains a sequence of

distinct elements converging to an element µ of Möb(H) if and

only if Γ contains a sequence of distinct elements converging to

the identity.

Proposition 1

Let Γ be a discrete subgroup of Möb(H). If X is a subgroup of

Γ, then X is discrete.

Conversely, there are a few special cases in which the

discreteness of a subgroup of Γ implies the discreteness of Γ.

We begin considering subgroups of Möb+(H) with discrete

normal subgroups. 19



Discreteness

Proposition 2

Let Γ be a discrete subgroup of Möb+(H) and let X be a

non-trivial normal subgroup of Γ. If X is discrete, then Γ is

discrete.

Proof:

To prove this proposition, we will use the contrapositive.

Suppose that Γ is not discrete and let {γn} be a sequence of

distinct elements of Γ coverging to the identity.

Choose some element µ of X, other than the identity, and

consider the sequence {γ−1
n ◦ µ ◦ γn}. 20



Discreteness

Observe that {γ−1
n ◦ µ ◦ γn} is a sequence of elements of X.

Since {γn} converges to the identity, we have that {γ−1
n }

converges to the identity as well, and so {γ−1
n ◦ µ ◦ γn}

converges to µ.

Then since γn are distinct and are converging to the identity,

γ−1
n ◦ µ ◦ γn are distinct.

Therefore, X is not discrete.
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Discreteness

Proposition 3

Let Γ be a subgroup of Möb(H), and let X be a finite index

subgroup of Γ. If X is discrete, then Γ is discrete.

Proof: First, we need to express Γ as a coset decomposition

with respect to X, that is:

Γ =

p⋃
k=0

αkX,

where α0, · · · , αp are elements of Γ.

22



Discreteness

Suppose that Γ is not discrete, and let {γn} be a sequence of

distinct elements of Γ converging to the identity.

For n, we can write γn = αknµn, where 0 ≤ kn ≤ p and µn ∈ X.

Since there are infinitely many elements in the sequence, there

is some fixed q satisfying 0 ≤ q ≤ p, so that kn = q for infinitely

many n.

So, consider the subsequence {γ = αqµm} consisting of those

elements of the sequence for which kn = q.

Since {γm} converges to the identity, we have that {αqµm}
converges to the identity as well. Hence, we have that {µm}
converges to α−1

q .

By the lemma, X is not discrete, a contradiction.
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Orbits

Let Γ be a discrete subgroup of Möb(H).

Definition
Let z ∈ H. The orbit Γ(z) of z under Γ is the set of all points of

H that we can reach by applying elements of Γ to z:

Γ(z) := {γ(z) | γ ∈ Γ}.

24



Orbits

Example:

Let Γ(z) = {γ(z) = az+b
cz+d | a, b, c, d ∈ Z, ad− bc = 1}.

Let z=i, then we have,

Γ(i) = {ai+ b

ci+ d
| a, b, c, d ∈ Z, ad− bc = 1}

Example:

Let Γ(z) = {γ(z) = az+b
cz+d | a, b, c, d ∈ Z, ad− bc = 1}. Let

z = 0 ∈ ∂H, then we have,

Γ(0) = { b
d
| ad− bc = 1}

= Q ∪ {∞}.
An irrational point on R can always be arbitrarily well

approximated by rationals.
25



Stabilizer

Definition
Let z ∈ H. The stabilizer Γz of z under Γ is defined as:

Γz := {γ ∈ Γ | γ(z) = z}.

Theorem
Let Γ be a subgroup of Möb(H). If Γ is discrete, then the

stabilizer

Γz := {γ ∈ Γ | γ(z) = z}.

is finite for every z ∈ H.

But, the converse of this theorem does not hold.
26



Stabilizer

Proof by using an example:

Consider the subgroup

Γ = {mλ(z) = λz | λ > 0}

of Möb(H).

Then Γ is not a discrete subgroup of Möb(H).

However, the stabilizer Γz is trivial for every z ∈ H.
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Fuchsian groups

Definition
A Fuchsian group is a discrete subgroup of either Möb(H) or

Möb(D).

Examples.

1. Any finite subgroup of Möb(H) or Möb(D) is a Fuchsian

group because any finite subset of any metric space is

discrete.

2. As a specific example in the upper half-plane, let

γθ(z) =
cos(θ/2)z + sin(θ/2)

−sin(θ/2)z + cos(θ/2)

be a rotation around i.

Let q ∈ N. Then {γ2πj/q | 0 ≤ j ≤ q − 1} is a finite

subgroup.
29



Fuchsian groups

3. The subgroup of integer translations

{γn(z) = z + n | n ∈ Z} is a Fuchsian group. The subgroup

of all translations {γb(z) = z + b | b ∈ R} is not a Fuchsian

group as it is not discrete.

4. The subgroup Γ = {γn(z) = 2nz | n ∈ Z} is a Fuchsian

group.

5. The subgroup Γ = {id} containing only the identity

Möbius transformation is a Fuchsian group. We call it the

trivial Fuchsian group.

6. If Γ is a Fuchsian group and Γ1 < Γ is a subgroup, then Γ1

is a Fuchsian group.

30



Fuchsian groups

7. One of the most important Fuchsian groups is the modular

group PSL(2, Z). This is the group given by Möbius

transformations of H of the form

γ(z) =
az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1

8. Let q ∈ N. Define

Γq = {az + b

cz + d
| a, b, c, d ∈ Z, ad−bc = 1, b, c are divisible by q}.

This is called the level q modular group or the congruence

subgroup of order q.
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Fuchsian groups

Example (3):

Let γ(z) = z + n. Then Γ = {..., γ−1, id, γ, γ2, ...}

Note that γa(z) = z + an and γb(z) = z + bn for a, b ∈ Z
for a 6= b,

γa(z) =
(1)z + an

(0)z + 1

and

γb(z) =
(1)z + bn

(0)z + 1

Thus dMöb(γa, γb) = min{|an− bn|, |an+ bn|}

≥ |n|
2
> 0, for a 6= b 32



Fuchsian groups

Example (7):

Let Γ = { γ(z) = az+b
cz+d | a, b, c, d ∈ Z, ad− bc = 1}

First, need to prove it is a group.

Let

γ1(z) =
a1z + b1
c1z + d1

, a1, b1, c1, d1 ∈ Z, a1d1 − b1c1 = 1

and

γ2(z) =
a2z + b2
c2z + d2

, a2, b2, c2, d2 ∈ Z, a2d2 − b2c2 = 1

Thus dMöb(γ1, γ2) ≥ 1 > 0

Therefore Γ is a Fuchsian group.

33



Fuchsian groups

Proposition 4

Let Γ be a subgroup of Möb(H). The following are equivalent:

i. Γ is a discrete subgroup of Möb(H) (i.e. Γ is a Fuchsian

group);

ii. the identity element of Γ is isolated.

Proof:

i ⇒ ii: is trivial from the definition.

ii ⇒ i: Given γ ∈ Γ, we can consider the continuous map: BMöb(γ, ε)
f−−−→ f(BMöb(γ, ε)) ⊆ Möb(H)

γ′
f7−−−→ γ−1γ′ (Multiply by γ−1)

where BMöb(γ, ε) = {γ′ | dMöb(γ, γ′) < ε} for some ε > 0.
34



Fuchsian groups

Since id is isolated, we can choose δ > 0 with

BMöb(id, δ) ∩ Γ = {id}.

Since f is a homeomorphism onto its image and f(γ) = id,

then we can choose ε > 0 which is small enough that

f(B(γ, ε)) ⊂ B(id, δ)

Then, since f(B(γ, ε)) ∩ Γ = {id}, therefore B(γ, ε) ∩ Γ = {γ}

35



Fuchsian groups

Theorem (Jørgensen’s inequality)

Let Γ ⊆ Möb(H) be generated by two elements γ1, γ2 ∈ Möb(H).

A necessary condition for Γ to be Fuchsian is that

max{||γ1 − id||, ||γ2 − id||} >
7

50

Refer to The Geometry of Discrete Groups, P. 107.

Theorem (Shimizu’s Lemma)

If Γ is a Fuchsian group and A =

(
1 1

0 1

)
∈ Γ, then for any

B =

(
a b

c d

)
∈ Γ, we have either c = 0 or |c| ≥ 1.

36



Fuchsian groups

Proposition 5

Let Γ be a subgroup of Möb(H). Then the following are

equivalent:

i. Γ is a Fuchsian group;

ii. For each z ∈ H, the orbit Γ(z) is a discrete subset of H.

Suppose this statement holds in the case of D.

37



Fuchsian groups

Example:

Let Γ = {γn | γn(z) = 2nz, n ∈ Z}. Fix z ∈ H. Then the orbit

of z is

Γ(z) = {2nz | n ∈ Z}.

Observe that the points 2nz lie on the (Euclidean) straight line

through the origin inclined at angle arg(z). Fix 2nz and let

δ = 2n−1|z|.
Then, |2mz − 2nz| ≥ δ whenever m 6= n.

Hence Γ(z) is discrete.

38



Fuchsian groups

Example:

Fix k > 0, k 6= 1. Consider the subgroup of Möb(H) generated

by the Möbius transformations of H given by

γ1(z) = z + 1, γ2(z) = kz.

First consider the orbit Γ(i) of i.

Assume that k > 1, then observe that

γ−n2 γm1 γ
n
2 (i) = i+

m

kn
.

Assume that 0 < k < 1, then observe that

γn2 γ
m
1 γ
−n
2 (i) = i+mkn.

Choose an arbitrarily large n. Then i is not an isolated point of

the orbit Γ(i). Hence Γ(i) is not discrete.
39



Properly discontinuous

Definition
The group Γ acts properly discontinuously on H if ∀z0 ∈ H and

any compact set K ⊆ H, the set { γ ∈ Γ | γ(z0) ∈ K} is finite.

Note that we could replace K by closed ball which is:

B(p, r) = { z ∈ H | d(p, z) ≤ r}

for any ε > 0.

40



Properly discontinuous

Lemma 2
Let Γ ⊆ Möb(H) be a subgroup acting properly discontinuously

on H.

Let z0 ∈ H be fixed by γ0 ∈ Γ. (γ0(z0) = z0)

Then ∃ neighbourhood W 3 z0 such that no other point in W is

fixed by a non-identity element of Γ.

41



Properly discontinuous

Proof by contradiction:

Assume for a contradiction

{
zn → z0 (n ≥ 1)

∃γn ∈ Γ− {e}, γn(zn) = zn

Therefore, ∀ε > 0, ∃N1 such that ∀n > N1, d(zn, z0) < ε.

Since :

i B(z0, 2ε) = { z ∈ H | d(z, z0) ≤ 2ε} is a compact.

ii Γ acts discontinuously on H.

⇒ { γ ∈ Γ | γ(z0) ∈ B2ε(z0)} is finite.

Therefore, ∃N2 ≥ 1, ∀n > N2, d(γn(z0), z0) > 2ε.

For n > max{N1, N2}:

{
d(zn, z0) < ε

d(γn(z0), z0) > 2ε 42



Properly discontinuous

Hence:

2ε < d(γn(z0), z0) ≤ d(γn(z0), γn(zn)) + d(γn(zn), z0)

= d(z0, zn) + d(zn, z0)

= 2d(z0, zn)

< 2ε

Contradiction arises.

43



Properly discontinuous

Corollary

If Γ acts properly discontinuously on H, then we can find

z0 ∈ H which is not fixed by any γ ∈ Γ− {id}.

Lemma 3
For z0 ∈ H and a compact set K ⊆ H:

E = { γ(z) =
az + b

cz + d
| ad−bc = 1, a, b, c, d ∈ R, γ(z0) ∈ K}(⊆ R4)

is compact.

44



Properly discontinuous

Proof:

Since K is compact, we can choose k1, k2 > 0:
k1 ≤ Im(γ(z0)) = Im(z0)

|cz0+d|2 (1)

k2 ≥ γ(z0) = |az0+b
cz0+d | (2)

Thus,


|cz0 + d| ≤

√
Im(z0)
k1

= c1 (3)

|az0 + b| ≤ k2

√
Im(z0
k1

= c2 (4)

From these constraints on a, b, c, d, we can deduce that E is

bounded. Clearly it is also closed, and thus compact.

45



Properly discontinuous

Proposition 6

Let Γ be a subgroup of Möb(H). The following are equivalent:

(i) Γ is Fuchsian;

(ii) Γ acts properly discontinuously on H.

Proof:

(i) ⇒ (ii):

Let z0 ∈ H and K ⊆ H be compact.

Since { γ ∈ Γ | γ(z0) ∈ K} = { γ ∈ Möb(H) | γ(z0) ∈ K } ∩ Γ,

the intersection is finite. (Γ acts properly discontinuously.)

46



Properly discontinuous

(ii) ⇒ (i):

Assume Γ acts properly discontinuously on H.

By the Corollary:

∃z ∈ H such that if γ ∈ Γ and γ(z) = z ⇒ γ = id.

Assume for a contradiction, Γ is not discrete.

Therefore, we can find a sequence{
γn ∈ Γ, n ≥ 1

γn → id (Without loss of generality)

In particular,

{
γn(z)→ z as n→∞
γn(z) 6= z, n ≥ 1

Thus, ∀ε > 0, { γ ∈ Γ | γ(z) ∈ B(z, ε)} is infinite.
47



Properly discontinuous

Proposition 7

Let Γ be a subgroup of Möb(H). Then Γ acts properly

discontinuously on H if and only if for all z ∈ H, Γ(z), the orbit

of z, is a discrete subset of H.

Proof:

(⇒): Suppose Γ acts properly discontinuously on H.

Then Γ is a Fuchsian group, and hence Γ(z) is a discrete subset

of H.

48



Properly discontinuous

(⇐): Prove by contradiction:

Suppose Γ does not act properly discontinuously on H.

Hence by the theorem, Γ is not discrete.

Then using the previous sequence, we can see that the orbit of z

is not discrete.

49



Summary

Group action:

1. Discreteness: dMöb(H)(γ1, γ2) > δ > 0.

2. Orbits: Γ(z) = {γ ∈ Γ | γ(z)}.
3. Stabilizer: Γz = {γ ∈ Γ | γ(z) = z}.
4. Properly discontinuous: ∀z0 ∈ H and any compact set

K ⊆ H, the set { γ ∈ Γ | γ(z0) ∈ K} is finite.

Fuchisan group:

1. is a discrete subgroup of Möb(H) or Möb(D).

2. identity element is isolated.

3. orbit is discrete subset of H.

4. acts properly discontinuously on H.
50
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Open and closed subsets

Definition
A subset Y ⊂ H is said to be open if ∀y ∈ Y, ∃ ε > 0 such that

the open ball Bε(y) = {z ∈ H | dH(z, y) < ε} of radius ε and

centre y is contained in Y .

A subset Y ⊂ H is said to be closed if its complement H \ Y is

open.

Examples:

1. The subset {z ∈ H | 0 < Re(z) < 1} is open.

2. The subset {z ∈ H | 0 ≤ Re(z) ≤ 1} is closed.

3. The subset {z ∈ H | 0 < Re(z) ≤ 1} is neither open nor

closed.

4. The subset ∅ is both open and closed.
52



Open and closed subsets: Remark

Note that hyperbolic circles are Euclidean circles (albeit with

different radii and centres).

Fact:

Let C = {w ∈ H | dH(z, w) = r} be a hyperbolic circle with

centre z ∈ H and radius r > 0. Let z = x0 + iy0. Then C is a

Euclidean circle with centre (x0, y0 cosh r) and radius

y0

√
cosh2r − 1 = y0 sinh r.

Thus to prove a subset Y ⊂ H is open it is sufficient to find a

Euclidean open ball around each point that is contained in Y .

In particular, the open subsets of H are the same as the open

subsets of the (Euclidean) upper half-plane. 53



Closure

Definition
Let Y ⊂ H be a subset. Then the closure of Y is the smallest

closed subset containing Y . We denote the closure of Y by

cl(Y ).

Example

The closure of {z ∈ H | 0 < Re(z) < 1} and

{z ∈ H | 0 < Re(z) ≤ 1} is {z ∈ H | 0 ≤ Re(z) ≤ 1}.

Properties of closed sets:

1. Any intersection of closed sets is closed.

2. The union of finitely many closed sets is closed.

54



Fundamental domain

Definition
Let Γ be a Fuchsian group. A fundamental domain F for Γ

is an open subset of H such that:

(i)
⋃
γ∈Γ

γ(cl(F )) = H

(ii) the images γ(F ) are pairwise disjoint; that is,

γ1(F ) ∩ γ2(F ) = ∅ if γ1, γ2 ∈ Γ, γ1 6= γ2.

Remark
Since both γ and γ−1 are continuous maps, γ(cl(F )) = cl(γ(F )).

Thus F is a fundamental domain if every point lies in the

closure of some image γ(F ) and if two distinct images do not

overlap. We say that the images of F under Γ tessellate H.
55



Example of Fuchsian group (I): Integer translations

The subgroup Γ of Möb(H) given by integer translations:

Γn(z) = {γn | γn(z) = z + n, n ∈ Z} is a Fuchsian group.

Proof
Consider the set F = {z ∈ H | 0 < Re(z) < 1}. This is an open

set. Clearly if Re(z) = a, then Re(γn(z)) = n+ a. Hence

γn(F ) = {z ∈ H |n < Re(z) < n+ 1}

and

γn(cl(F )) = {z ∈ H |n ≤ Re(z) ≤ n+ 1}

Hence H =
⋃
n∈Z γn(cl(F )). It is also clear that if γn(F ) and

γm(F ) intersect, then n = m. Hence F is a fundamental domain

for Γ.
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A fundamental domain and tessellation for

Γ = {γn | γn(z) = z + n}
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Example of Fuchsian group (II)

The subgroup Γ = {γn | γn(z) = 2nz, n ∈ Z} of Möb(H) is a

Fuchsian group.

Proof
Let F = {z ∈ H | 1 < |z| < 2}. This is an open set. Clearly, if

1 < |z| < 2 then 2n < |γn(z)| < 2n+1. Hence

γn(F ) = {z ∈ H | 2n < |z| < 2n+1}

and

γn(cl(F )) = {z ∈ H | 2n ≤ |z| ≤ 2n+1}

Hence H =
⋃
n∈Z γn(cl(F )). It is also clear that if γn(F ) and

γm(F ) intersect, then n = m. Hence F is a fundamental domain

for Γ.
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A fundamental domain and tessellation for

Γ = {γn | γn(z) = 2nz}
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Uniqueness of Fundamental domains

Suppose Γ = {Id}, the trivial group containing just one

element. In this case, H is the only fundamental domain for Γ.

Now suppose Γ 6= {Id}. A fundamental domain is not uniquely

determined by a non-trivial Fuchsian group: an arbitary small

perturbation gives another fundamental domain.

60



Fundamental domains are not unique - continued

Let Γ be the cyclic group generated by the transformation

z → 2z. The fundamental domains for Γ are:

61



Any two fundamental regions have the same area

Recall that: The boundary ∂F of a set F is defined to be the

set cl(F ) \ int(F ).

Here cl(F ) is the closure of F and int(F ) is the interior of F .

Proposition

Let F1 and F2 be two fundamental domains for a Fuchsian

group γ, with AreaH(F1) <∞. Assume that AreaH(∂F1) = 0

and AreaH(∂F2) = 0. Then AreaH(F1) = AreaH(F2).
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Proof of Proposition

Since AreaH(∂Fi) = 0, AreaH(cl(Fi)) = AreaH(Fi) ∀i = 1, 2

Hence, we have:

cl(F1) ⊃ cl(F1) ∩ (
⋃
γ∈Γ

γ(F2)) =
⋃
γ∈Γ

(cl(F1) ∩ γ(F2))

As F2 is a fundamental domain, the sets cl(F1) ∩ γ(F2) are

pairwise disjoint.

Hence, using the facts that

(i) the area of the union of disjoint sets is the sum of the areas

of the sets,

(ii) Möbius transformations of H preserve area.
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Proof of Proposition - continued

We have:

AreaH(cl(F1)) ≥
∑
γ∈Γ

AreaH(cl(F1) ∩ γ(F2))

=
∑
γ∈Γ

AreaH(γ−1(cl(F1)) ∩ F2)

=
∑
γ∈Γ

AreaH(γ(cl(F1)) ∩ F2)

Since F1 is a fundamental domain we have:⋃
γ∈Γ

γ(cl(F1)) = H
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Proof of Proposition - continued

Hence∑
γ∈Γ

AreaH(γ(cl(F1)) ∩ F2) ≥ AreaH

( ⋃
γ∈Γ

γ(cl(F1)) ∩ F2

)
= AreaH(F2)

Hence

AreaH(F1) = AreaH(cl(F1)) ≥ AreaH(F2)

Interchanging F1 and F2 in the above gives the reverse

inequality.

AreaH(F2) = AreaH(cl(F2)) ≥ AreaH(F1)

Hence AreaH(F1) = AreaH(F2).
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Points to note

The area of a fundamental region, if it is finite, is a numerical

invariant of the group.

Integer translations are examples of a Fuchsian group with a

fundamental domain of infinite area.
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A Fuchsian group and its subgroup

Let Γ be a Fuchsian group and let Γ1 < Γ be a subgroup of Γ.

Then Γ1 is a discrete subgroup of the Möbius group Möb(H)

and so is itself a Fuchsian group.

Definition
Let G be a group. A subset H of G is a subgroup of G if it

satisfies the following properties:
• Closure: If a, b ∈ H, then ab ∈ H.

• Identity: The identity element of G lies in H.

• Inverses: If a ∈ H, then a−1 ∈ H.

Definition
The index of a subgroup H in a group G is the number of left

cosets of H in G, or equivalently, the number of right cosets of

H in G.
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A Fuchsian group and its subgroup

Proposition

Let Γ be a Fuchsian group and suppose that Γ1 is a subgroup of

Γ of index n. Let

Γ = Γ1γ1 ∪ Γ1γ2 ∪ · · · ∪ Γ1γn

be a decomposition of Γ into cosets of Γ1. Let F be a

fundamental domain for Γ. Then:

(i) F1 = γ1(F ) ∪ γ2(F ) ∪ · · · ∪ γn(F ) is a fundamental domain

for Γ1;

(ii) if AreaH(F ) is finite then AreaH(F1) = nAreaH(F ).
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Summary: Fundamental domains

1. A Fuchsian group is a discrete subgroup of the group

Möb(H) of all Möbius transformations of H.

2. A subset F ⊂ H is a fundamental domain if, essentially, the

images γ(F ) of F under the Möbius transformations γ ∈ Γ

tessellate (or tile) the upper half-plane H.

3. The set {z ∈ H | 0 < Re(z) < 1} is a fundamental domain

for the group of integer translations {γn(z) = z + n |n ∈ Z}
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Introduction to Dirichlet polygon

Each Fuchsian group possesses a fundamental domain.

The purpose of the following slides is to give a method for

constructing a fundamental domain for a given Fuchsian group.

The fundamental domain that we construct is called a

Dirichlet polygon.

There are other methods for constructing fundamental domains

that, in general, give different fundamental domains than a

Dirichlet polygon; such an example is the Ford fundamental

domain.

The construction given below is written in terms of the upper

half-plane H. The same construction works in the Poincaré disc
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Dirichlet polygon

Definition
Let C be a geodesic in H. Then C divides H into two

components. These components are called half-planes.

Example 1:

The imaginary axis determines two half-planes:

{z ∈ H |Re(z) < 0} and {z ∈ H |Re(z) > 0}.

Example 2:

The geodesic given by the semi-circle of unit radius centred at

the origin also determines two half-planes (although they no

longer look like Euclidean half-planes): {z ∈ H | |z| < 1} and

{z ∈ H | |z| > 1}.
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Convex hyperbolic polygon

Definition
A convex hyperbolic polygon is the intersection of a finite

number of halfplanes.

It is possible that an edge of a hyperbolic polygon to be an arc

of the circle at infinity. For example, a polygon with one edge

on the boundary (i) in the upper half-plane, and (ii) in the

Poincaré disc.
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Perpendicular bisectors

Let z1, z2 ∈ H. Recall that [z1, z2] is the segment of the unique

geodesic from z1 to z2. The perpendicular bisector of [z1, z2] is

defined to be the unique geodesic perpendicular to [z1, z2] that

passes through the midpoint of [z1, z2].
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Perpendicular bisectors: Proposition

Proposition

Let z1, z2 ∈ H. The set of points {z ∈ H | dH(z, z1) = dH(z, z2)}
that are equidistant from z1 and z2 is the perpendicular bisector

of the line segment [z1, z2].

Proof
Without loss of generality (by applying a Möbius isometry, if

necessary), we can write:{
z1 = i

z2 = ir2 (r > 1)

There is no loss in generality to assume that r > 1, since we can

apply the Möbius transformation z 7→ −1
z , if required.
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Proof of proposition - continued

Recall that:

Let a ≤ b. Then the hyperbolic distance between ia and ib is

log ba . Moreover, the vertical line joining ia to ib is the unique

path between ia and ib with length log ba ; any other path from

ia to ib has length strictly greater than log ba .

Using the above fact, it follows that the mid-point of [i, ir2] is

at the point ir. It is clear that the unique geodesic through ir

that meets the imaginary axis at right-angles is given by the

semi-circle of radius r centred at 0.
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Proof of proposition - continued

Recall that:

cosh dH(z, w) = 1 +
|z − w|2

2 Im z Imw

In our setting this implies that:

|z − i|2 =
|z − ir2|2

r2

This simplifies to |z| = r, i.e. z lies on the semicircle of radius r,

centred at 0.
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Example

Let z1 = x1 + iy1, z2 = x2 + iy2, z1, z2 ∈ H. Show that the

perpendicular bisector of [z1, z2] can also be written as

{z ∈ H | y2|z − z1|2 = y1|z − z2|2}.

Solution:

By the previous Proposition, z ∈ H is on the perpendicular

bisector of [z1, z2] if and only if dH(z, z1) = dH(z, z2).

Note that:

dH(z, z1) = dH(z, z2)

cosh dH(z, z1) = cosh dH(z, z2)

1 +
|z − z1|2

2y1Im(z)
= 1 +

|z − z2|2

2y2Im(z)

y2|z − z1|2 = y1|z − z2|2
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Tools for Dirichlet polygon

Theorem
Let Γ be a non-trivial Fuchsian group. Then there exists a

point p ∈ H that is not a fixed point for any non-trivial element

of Γ. (That is, γ(p) 6= p for all γ ∈ Γ \ {Id}.)
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Tools for Dirichlet polygon - continued

Definition: Let Γ be a Fuchsian group and let p ∈ H be a

point such that γ(p) 6= p for all γ ∈ Γ \ {Id}. Let γ be an

element of Γ and suppose that γ is not the identity. The set

{z ∈ H | dH(z, p) < dH(z, γ(p))}

consists of all points z ∈ H that are closer to p than to γ(p).

Definition: We define the Dirichlet region to be:

D(p) = {z ∈ H | dH(z, p) < dH(z, γ(p)) for all γ ∈ Γ \ {Id}}

Thus the Dirichlet region is the set of all points z that are closer

to p than to any other point in the orbit Γ(p) = {γ(p) | γ ∈ Γ}
of p under Γ.
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Tools for Dirichlet polygon - continued

Fact: Let Γ be a Fuchsian group and let p be a point not fixed

by any non-trivial element of Γ. Then the Dirichlet region D(p)

is a fundamental domain for Γ. Moreover, if AreaH(D(p)) <∞
then D(p) is a convex hyperbolic polygon; in particular it has

finitely many edges.

Remark 1: There are many other hypotheses that ensure that

D(p) is a convex hyperbolic polygon with finitely many edges;

requiring D(p) to have finite hyperbolic area is probably the

simplest. Fuchsian groups that have a convex hyperbolic

polygon with finitely many edges as a Dirichlet region are called

geometrically finite.
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Tools for Dirichlet polygon - continued

Remark 2: If D(p) has finitely many edges then we refer to

D(p) as a Dirichlet polygon. Notice that some of these edges

may be arcs of ∂H. If there are finitely many edges then there

are also finitely many vertices (some of which may be on ∂H).

Remark 3: The Dirichlet polygon D(p) depends on p. If we

choose a different point p, then we may obtain a different

polygon with different properties, such as the number of edges.
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Summary: procedure to construct a Dirichlet polygon

for a given Fuchsian group

1. Choose p ∈ H such that γ(p) 6= p, ∀γ ∈ Γ \ {id}.
2. Let γ ∈ Γ \ {id}. Construct the geodesic segment [p, γ(p)].

3. Let Lp(γ) denote the perpendicular bisector of [p, γ(p)].

4. Let Hp(γ) denote the half-plane determined by Lp(γ) that

contains p.

5. Let

D(p) =
⋂

γ∈Γ\{id}

Hp(γ)
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Example (I): The group of all integer translations

Let Γ be the Fuchsian group {γn | γn(z) = z + n, n ∈ Z}. Then

D(i) = {z ∈ H | − 1
2 < Re(z) < 1

2}.

Solution:

Let p = i. Then clearly γn(p) = i+ n 6= p so that p is not fixed

by any non-trivial element of Γ. As γn(p) = i+ n, it is clear

that the perpendicular bisector of [p, γn(p)] is the vertical

straight line with real part n
2 . Hence,

Hp(γn) =

{
{z ∈ H |Re(z) < n/2} if n > 0

{z ∈ H |Re(z) > n/2} if n < 0
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Example (I) - continued

Hence,

D(p) =
⋂

γ∈Γ\{Id}

Hp(γ)

= Hp(γ1) ∩Hp(γ−1)

= {z ∈ H | − 1/2 < Re(z) < 1/2}

85



Example (II)

Let = {γn | γn(z) = 2nz, n ∈ Z}. This is a Fuchsian group.

Choose a suitable p ∈ H and construct a Dirichlet polygon D(p).

Solution: Let Γ = {γn | γn(z) = 2nz}. Let p = i and note that

γn(p) = 2ni 6= p unless n = 0. For each n, [p, γn(p)] is the arc of

imaginary axis from i to 2ni. Suppose first that n > 0.

Recalling that for a < b we have dH(ai, bi) = log b/a it is easy to

see that the midpoint of [i, 2ni] is at 2n/2i.
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Proof - continued

Hence, Lp(γn) is the semicircle of radius 2n/2 centred at the

origin and

Hp(γn) = {z ∈ H | |z| < 2n/2}

For n < 0, we can see that

Hp(γn) = {z ∈ H | |z| > 2n/2}

Hence,

D(p) =
⋂

γn∈Γ\{Id}

Hp(γn)

= {z ∈ H | 1/
√

2 < |z| <
√

2}
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